UCRL- 91753
PREPRINT

Programming the
Livermore VAX 11/780-4
Parallel Processor System

Version 1

Edwin Hastings
Nancy Werner

Computing Research Group
Lawrence Livermore National Laboratory

DEC Parallel Processing Conference
Laconia, New Hampshire

November 13-16, 1984

This Is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication. this preprint is made svailable with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes sny warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer. or
otherwise, does not necessarily constitate or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Programming the
Lifermore VAX 11/780-4
Parellel Processor System*
Version 1

Edwin Hastings
Nancy Werner

Computing Research Group
Lewrence Livermore National Laboratory

November B, 1984

ABSTRACT. This manual describes the Pare Subroutine Library
and Utility Package. The Para library is used to program the
four processor shared memory VAX 11/780-4. A discussion of the
library. utilities, and a demonstration program are provided.

*Th'is work was supported by the U.S. Department of Energy under
Lawrence Livermore National Laboratory contract # W-7405-ENG-48.

Page 2

CONTENTS

CHAPTER 1 INTRODUCT] ON
11 MAILBOXES N
1.2 GLOBAL SECTIONS1=-2
1.3 EVENT FLAGS1=2
1.4 LOCKS1=-3
1.5 BINARY SEMAPHORES (LATCHES) 1-3
1.6 COUNTING SEMAPHORES (P & V) 1-4

CHAPTER 2 THE PARA SUBROUTINES

CHAPTER 3 THE SHARE PROGRAM

CHAPTER 4 RUNNING A PARALLEL PROGRAM
41 DESCRIPTION OF COMMANDS 4-5
4.1.1 Newfile .. 4-5
4.1.2 Paralink . Y)
4.1.3 ParalankD - 45
4.1.4 Parasetup 4-5
4.1.5 Perasubmit 4-5
4.1.6 Removeglobal 4-5

APPENDIX A GLOSSARY

November 8, 1984

CHAPTER 1

INTRODUCTION

The Para Libary are the first routines used to program the
four processor shared memory Livermore VAX 11:780-4. As a
first set they have a few rough edges and need enhancement.
These routines are intended to make parallel programming on the
VAX straight forward and essy to use.

There is also a listing and description of the share
program which was used to debug and test these routines. Share
provides and example of global sections. locks, and me)lboxes.
It simulates a partial differential solution solver. The .
actua]l code in the "work” area of share tests the scheduling

aelgorithms.

Five types of routines and their uses are described in
this manual .

1. Mailboxes Scheduling

2. Global Sections Shared Variables

3. Event Flags — Barriers

Critical Sections

4. Locks
5. Binary Semaphores (Latches)
6. Counting Semaphores (P & V)

1f you have suggestions or comments please talk to us.

Edwin Hastings (415) 423-7875 & Nancy Werner (415) 423-7874

INTRODUCT1ON Page 1-2
MA]LBOXES ‘

1.1 MAILBOXES

Mailboxes are useful for scheduling work among multiple
processes. One process writes information about work to be
done to the mailbox end any cooperating process can reed it.

Me:lboxes are sequential devices that reside 1n memory.
They are used the same way that other devices are, with normal
READ and WRITE statements. If there are more writes than reads
then the data 1s buffered, if there are more reeds than writes
then the reading processes are put into a queue to wait for
data. :

1.2 GLOBAL SECTIONS

Globa]l sections are most useful for putting variables into
the shared memory. This 1s. done by placing COMMON blocks into
shared memorvy. When the common block 1s in shared memory the
variebles 1n the common block automatically become shared.

This way shared variebles are used just like other variables.

Global sections are named areas of memory. The global
section routines create sections that are in shared memory so
that processes on all machines can access them. You can do
this by forcing a common block onto a page boundary (this is
done by Parelink) and by using the create and map global.
section call in your program's initialization section. At the
end of your program the global sections must be deleted.

1.3 EVENT FLAGS

Event flags syvchronize processes so that they all start or
stop at the same point. For example all processes wait on an
event flag that says everyone has finished initialization or a
process can check an event flag periodically to see if any
other process has caused an error or finished its job. Event
flegs are barriers that activate all the jobs which are waiting

on them.

There are 32 event flags that cen be shared between
processes. Three functions can be performed on event flags.
turning them on. turning them off{, and waiting for them to be
turned on.

An example with 5 processes: process 1 turns off a flag,
after a while process 2 waits for the flag, then processes 3.
4, and 5 join 1n the wait. Finally process 1 decides to turn
on the flag. At that time processes 2. 3, 4, and 5 continue
execution. All other processes that come along and wait on the
flag continue execution because the flag 1s still on. Later

INTRODUCTION Page 1-3
EVENT FLAGS

any process may turn off the event flag. but this won't affect
the running processes. :

1 4 LOCES

Locks. Counting semaphores, and Binary semaphores are used
for protecting critical variables. These are variables that
you want to have only one process modify at one time. Locks
and semaphores allow you to protect a single variable access or
& whole section of code.

Locks. Counting semaphores and Binary semaphores are very
similar. They differ 1n that processes waiting for a lock or
counting semaphore wait i1n a queue and the first process in the
queue gets the lock when it is released. With binary
semephores any one of the waiting processes may get it. With
locks only the processes that turned 1t on can turn 1t off,
with semaphores any process can turn 1t off once it is on.
Locks are slower than semaphores but they provide more security
and the abi1lity to be defined as hierarchy of locks. There are
32 binary semephores and en unlimited number of locks and
counting semaphores available.

An exemple with 5 processes. process 1 obtains a lock.
after a while process 2 tries to obtain the lock and waits for
1t since the Jock is in use. Then processes 3, 4, and 5 join
in the wait. Finally process 1 decides to release the lock.
At that time processes 2 continues execution having obtained
the lock, and process 3, 4, and 5 continue to wait. All other
processes that come along and tries to obtain the lock wait in
the queue. Leter process 2 turns off the lock and the next
process in the queue gets it.

1.5 BINARY SEMAPHORES (LATCHES)

Latches are binary semaphores that are granted to one of
the processes that is waiting for them. It isn't possible to
determine the order in which processes will get the latch or
how long it will take to obtain. There are 32 latches
available to the user.

An example with 5 processes: process 1 turns on a latch,
after a while process 2 tries to obtain the latch and waits for
it since the latch 1s in use. Then processes 3, 4, and 5 join
in the wait. Finally process 1 decides to turn off the latch.
At thet time one of the processes, either 2, 3, 4, or 5 obtains
the latch and continues execution. All other processes that
come along and try to obtain the latch weit i1n the pile.

INTRODUCTION Page 1-4
COUNTING SEMAPHORES (P & V)

1.6 COUNTING SEMAPHORES (P & V)

Counting semaphores are similar to Latches (Binary
Semeaphores) except that they have & queue of waiting processes.
This guareantees that once you wait for a semaphore you are in a
fixed line for 1t With binary semaphores anvone who is
vwaiting for 1t may get 1t randomly thus someone who starts
waiting after vou mey get it before you do.

An example with 5 processes: process 1 obtains & counting
semaphore. after a while process 2 tries to obtain the
semaphore and waits for 1t since the semaphore is in use. Then
processes 3, 4. and 5 join in the wait. Finally process 1
decides to relinquish the semaphore. At that time processes 2
continues execution having obtained the semaphore. and process
3. 4. and 5 continue to wait. All other processes that come
elong and tryv to obtain the semaphore wait i1n the queue. Later
process 2 relinquishes the semaphore end the next process in
the queue gets 1t.

CHAPTER 2

THE PARA SUBROUTINES

THE PARA SUBROUTINES Page 2-2

PARA_EVENTS_INIT —— Initialize Event Flags

Par&_events_init associates & process with a common event
flag cluster. Calling this from multiple processes lets
them &ll use the same event flags provided that the same
events_name is specified. This need be done only once per
process no matter how many event flags are used.

FORMAT

status = para_eventis_init (events_name)

RETURNS
type. integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS
EVENTS_NAME
tyvpe. character
access. Tead only

mechanism. by descriptor

THE PARA SUBROUTINES Page 2-3

PARA_EVENT_ON — Turn on an Event Fleag

Parea_event_on sets &an event flag This ceauses jobs which
are walting on the event fleg.to continue execution.

FORMAT

status = pare_event_on (event_number)

RETURNS
type. 1integer*4 status condition-
access write only
mechanism. by value

ARGUMENTS
EVENT_NUMBER
type. integer*4 reange 0..31
access. read only

mechanism. by reference

THE PARA SUBROUTINES Page 2-4

PARA_EVENT_OFF —— Turn off an Event Flag

Para_event_off resets an event flag.

FORMAT

status = para_event_off (event_number)

RETURNS
type : integer*4 status condition
access. write only
. .mechanism. by value
ARGUMENTS .. . ' S . .
EVENT_NUMBER
type. integer*4 range 0..31
access. _ readonly

mechanism. by reference

THE PARA SUBROUTINES Page 2-5

PARA_EVENT_WAIT — Wait for an Event Flag

If the event flag 15 on when PARA_EVENT_WAIT 1s celled
then the process continues execution. 1f the event flag
1s off when PARA_EVENT_WAIT 1s called then PARA_EVENT_WAIT
walts for the event flag to be turned on before
continuing. -

FORMAT

status = para_event_wait (event_number)

RETURNS
type. integer*4 status condition
access write only
mechanism by value

ARGUMENTS
EVENT_NUMBER
type: integer*4 range 0. .31
access. readonly

mechani sm by reference

THE PARA SUBROUTINES

Page 2-6

PARA_GLOBAL_MAP —— Map & Globa) Section

Pare_global_map maps date from first_item to last_item
1into global section GLOBAL NAME. This can be used to put
data structures and common blocks into the shared memory.

FORMAT

status = para_global_map (globa]_naﬁe. first_item_eddress,

last_i1tem_address, fi1lename)

RETURNS
type. ’ - integer*4 status condition
access. write only
mechanlsm by value
ARGUMENTS
GLOBAL_NAME
type. character
access: read only
mechanism by descriptor
FIRST_ITEM_ADDRESS
type. integer*4
access. read only

mechanism.

LAST_ITEM_ADDRESS

type:
access:
mechanism.

by reference

integer*4
read only
by reference

THE PARA SUBROUTINES Page 2-7

FI1LENAME

type. character
access. reaed only
mechanism. by descriptor

description
: This file 1s used to save the
contents of the global section by
PARA_GLOBAL_WRITE. This filemust be
at least the si1ze of the global
section. See the NEWFILE command.

THE PARA SUBROUTINES Page 2-8

PARA_GLOBAL_MAP_ZRO —— Mep and Zero a Global Section

Pare_globel_map_zro maps zeroed dete for first_i1tem to
last_1tem onto global section GLOBAL_NAME This can be
used for putting data 1nto shared memory and i1nitializing
1t Lo zero.

FORMAT

status = para_global_map_zro (global_name,
first_item_address.
last_item_address, filename)

RETURNS
type. integer*4 status condition
access. write only
mechanism. . by value
ARGUMENTS
GLOBAL_NAME
type. character
access: read only
mechgnism: by descriptor -
FIRST_ITEM_ADDRESS
type. integer*4
access. read only
mechanism: by reference
LAST_1TEM_ADDRESS
type. integer*4

access: read only

THE PARA SUBROUTINES

mechanism.

FI1LENAME

tvpe
access.
mechanism.

description.

Page 2-9

by reference

character
read only
by descriptor .

This file is used to save the
contents of the global section by
PARA_GLOBAL_WRITE. This filemust be
at least the size of the global
section. See the NEWFILE command.

THE PARA SUBROUTINES Page 2-10

PARA_GLOBAL_REMOVE.-—— Remove & Global Section

Pare_global_remove deletes & global section from memory
Global_name 1s the section to be deleted.

NOTE. Only the processor which creates the global section
can remove it from the shared memory. If & non creator
processor tries to delete the section then the error
status SS§_NOTCREATOR 1s returned. If the global section
does not exists or has already been deleted then the
status SS$§_NOSUCHSEC 1s returned.

FORMAT

status = para_global_remove (global_name)

RETURNS
type: - integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS
GLOBAL_NAME
type: chareacter
access. read only

mechanism. by reference

THE PARA SUBROUTINES

Page 2-11

PARA_GLOBAL_WRT — Write a Global Section to its Disk File

Pare_global_wrt writes a global section to its

corresponding backup file.
passed to the global section map routine.

1s the filename which was
Only the

that

processor which created the section can write it to disk.

FORMAT

status = para_global_wrt (first_item_eddress,

last_1tem_address)

RETURNS
type: integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS
FIRST_1TEM_ADDRESS
type: integer*4
access: read only
mechanism. by reference
LAST_ITEM_ADDRESS
type: integer*4
access. read only
mechanism: by reference

THE PARA SUBROUTINES Page 2-12

PARA_LATCHES_INIT — Initialize Letches (Binery Semaphores)

Pare_Latches_init associates & process with & common event
flag cluster. Calling this from multiple processes lets
them &l] use the same Latches provided that the same
Letch_name 1s specified. Latches use event flag clusters
in & different way than the Para_event routines do.

NOTE: Locks, Counting semaphores and Binary semaphores
are very similar. They differ in that processes waiting
for a lock or counting semaphore wait in a queue and the
first process in the queue gets the lock when 1t 1s
released. With binary semaphores any one of the waiting
processes may get it. With locks only the processes that
turned 1t on can turn 1t off{, with semaphores any
processes can turn 1t off once i1t 1s on. Locks are slower
than semaphores but they provide more security and the
abi1lity to be defined as hierarchy of locks. There are 32.
binary semephores and an unlimited number of locks and
count1ng semaphores available.

. FORMAT

status = para_latches_init (latch_name)

RETURNS
type: integer®*4 status condition
access: write only
mechanism. by value
ARGUMENTS
LATCH_NAME
type: character
' access: read only

mechanism: by descriptor

THE PARA SUBROUTINES

Page 2-13

PARA_LATCH_INIT — Initialize e Letch (Binary Semaphore)

Pare_lalch_init

initializes & latch to be available

FORMAT

stetus = para_latch_init (letch_value.latch_number)

.RETURNS

type.
access.
mechanism

integer*4 status condition
write only
by value

ARGUMENTS |

LATCH_VALUE

type.
access:
mechanism:
description.

LATCH_NUMBER

type:
access.
mechanism.
description:

integer*2 range (<= 1)
read/write
by reference

Latch_value contains the status value
of the latch. Status value = 1 means
latch is available, <= 0 means latch
1§ in use.

integer*2 range 0..31
read only
by reference

Latch_number contains the event flag
number which is used to signal the
availablility of the latch.

THE PARA SUBROUTINES

Page 2-14

PARA_LATCH_ON —— Obtain a Latch (Binary Semaphore)

Pare_letch_on waits for a latch. There mav be multiple
processes waiting for the latch. When 1t becomes
availlable only one of the processes will get the latch.

FORMAT

status = para_latch_on (latch_value, latch_number)

RETURNS

type.
access.
mechanism.

integer*4 status condition
write only
by value

ARGUMENTS

LATCH_VALUE

type:
access:
mechanism.
description:

LATCH_NUMBER

type:
access:
mechanism:
description:

integer*2 range (<= 1)
rgad/write
by reference

Latch_value contains the status value
of the latch. Status value = 1 means
latch 1s availeble., <= 0 means latch
is 1n use.

integer®*2 range 0..31
read only
by reference

Latch_number contains the event flag
number which ,is used to signal the
availeblility of the latch.

THE PARA SUBROUTINES Page 2-15

PARA_LATCH_OFF ——— Clear a Latch (Binary Semaphore)

Pere_latch_off clears a latch thus meking 1t available to
other processes.

FORMAT

status = para_latch_off (latch_value, latch_number)

RETURNS

type. integer*4 status condition

access: write only

mechanism by value .
ARGUMENTS

LATCH_VALUE

type. integer*2 range (<= 1)

access. read/write

mechanism. by reference

description:
Latch_value contaeains the status value

of the latch. Status value = 1 means
latch is available, <= 0 means latch

is in use.
LATCH_NUMBER
type. . integer*2 range 0..31
access: readonly
mechanism: by reference

description:
Latch_number contains the event flag

number which is used to signal the
availablility of the latch.

THE PARA SUBROUTINES Page 2-16 °

PARA_LOCK_ASGN —— Assign Null Lock

Pare_lock_asgn creates a null lock called LOCK_NAME

Named locks cen be used by multiple programs to
synchronize access to a certain area of code or variables.
The returned value of LOCK_NAME_ID contains a lock
identi1fication, which should be used in PARA calls to
release or convert the lock. and a status code indicating
whether or not the Lock operation was performed. The
first word of LOCK_NAME_ID is the status and should be
checked after the call for SS$_NORMAL.

NOTE. Locks. Counting semaphores and Binary semaphores
are very similar. They differ in that processes waiting
for & lock or counting semaphore wait in & queue and -the
first process in the queue gets the lock when 1t is
released. With binary semeaphores any one of the waiting
processes may get it. With locks only the processes that
turned it on can turn it off, with semaphores any
processes can turn it off once 1t is on. Locks are slower
than semaphores but they provide more security and the
abi1lity to be defined as hierarchy of locks. There are 32
binary semaphores and an unlimited number of locks and
counting semaphores available.

FORMAT

status = para_lock_asgn (lock_name,lock _name_id)

RETURNS
type. integer*4 status condition
access: write only
mechanism: - by value

ARGUMENTS

LOCK_NAME

THE PARA SUBROUTINES Page 2-17

type. character

access. read only

mechanism. by descriptor

description. Lock_neme 1s the name of the lock to
be used.

LOCK_NAME_ID

type: integer*2 (4)

access: "write only

mechanism. by reference

descraiption.
lock_name_id contains the id code

needed to refer to the lock on all
subsequent pare_lock calls. The
first word of lock_name_id contains
the status code returned by this
function.

THE PARA SUBROUTINES Page 2-18

PARA_SUBLOCK_ASGN —-— Null Sublock

Pare_sublock_asgn creates a null sublock called LOCK_NAME.
Named locks can be used by multiple programs to
synchronize access to a certain area of code or variable,
a sublock 1s associated with its parent lock. All
sublocks with the same parent lock can be turned off with
a single system call. The returned value of LOCK_NAME_ID
contains a lock identification. which should be used 1n
PARA cells to release or convert the lock, and a status
code indicating whether or not the Lock operation was
performed. The first word of LOCK_NAME_ID is the status
end should be checked after the call for SS$_NORMAL.

FORMAT

status = para_sublock_asgn (lock_name:parent_name_id,
lock_name_1d)

RETURNS
type. integer'4';tatus condition
access. vrite only
mechanism. by value

ARGUMENTS
LOCK_NAME
type: character
access: read only
mechani sm: by descriptor
description: Lock_name is the name of the lock to

be used.
PARENT_NAME_1D

type: integer*2 (4)

THE PARA SUBROUTINES

access.
mechanism.
description:

LOCK_NAME_1D

type:
access:
mechanism.
description.

Page 2-19

Tead only
by reference

PARENT_NAME_1D contains the ID. code
of the parent lock.

integer*2 (4)
write only
by reference

" lock_name_1d contains the id code

needed to refer to the lock on all
subsequent pare_lock calls. The
first word of lock_name_1d contains
the status code returned by this
function.

THE PARA SUBROUTINES Page 2-20

PARA_LOCK_ON — Protected Write Lock

Pare_lock_on converts a null lock with velue lock_name_id
to a protected write lock. Lock_name_1d was returned by
Para_lock_esgn. 1f the lock 1s already on then the
process is put into a waiting queue for the lock. Named
locks can be used by multiple programs to synchronize
access to a certein aree of code or varieble. The first
word of LOCK_NAME_ID is the status and should be checked

after the call for SS$_NORMAL.

FORMAT

status = para_lock_on (lock_neme_id)

RETURNS
-type:' integer'; status condition
access. . write only
mechanism: by value
ARGUMENTS
LOCK_NAME_1D
type: integer*2 (4)
access. read/write
mechanism: by reference

description:
lock_name_id contains the id code

needed used to refer to the lock.
The first word of lock_name_id
contains the status code returned by
this function.

THE PARA SUBROUTINES Page 2-21

PARA_LOCKV_ON —~ Protected Write Lock

Pare_Jlockv_on converts a null lock with value lock_name_id
to & protected write lock. Lock_name_i1d was returned by
Para_lock _asgn. 1f the lock 1s already on then the
process 1s put into a waiting queue for the lock.
Para_lockv_on will also retrieve B words of data from the
distributed lock menager's datebase into words 5 through
12 of lock_neme_1d. This date had been previously stored
there by a call to Para_lockv_off. The first word of
LOCK_NAME_ID is the status and should be checked after the

cal) for SS$_NORMAL.

FORMAT

status = pare_lockv_on (lock_name_id)

RETURNS
type: integer*4 status condition
access. write only
mechanism. by value

ARGUMENTS
LOCK_NAME_ID
type: integer®2 (12)
access: read,/write
mechanism: by reference

description:
lock_neme_id contains the id code’

needed used to refer to the lock.
The first word of lock_name_id
conteins the status code returned by
this function.

THE PARA SUBROUTINES Page 2-22

PARA_LOCKE_OFF —— Null lock

Pare_Jlock_off converts the lock referred to by
lock_neme_id to & null lock. Lock_name_id was returned by
Para_lock_asgn. If processes are waiting for the lock
when 1t 1s turned off, then the first process in the queue
waiting for the lock will get it.

FORMAT

status = para_lock_off (lock_name_id)

RETURNS
type. integer*4 status condition
access . write only
mechanism. by value
ARGUMENTS
LOCK_NAME_ID
type: integer*2 (4)
access: read/write
mechanism: by reference

description.
lock_name_id contains the id code

needed used to refer to the lock.
The first word of lock_name_id
contains the status code returned by
this function.

THE PARA SUBROUTINES Page 2-23

PARA_LOCKY_OFF —— Null lock

Pares_lock_off converts the lock referred to by
lock_name_1d to & null lock Lock_neame_id was returned by
Para_lock_asgn. If processes are waiting for the lock
vhen 1t 1s turned off. then the first process in the queue
waiting for the lock will get it. Paralockvoff will also
store 8 words of data contained in words 5 through 12 of
lock_neame_id 1nto the distributed lock manager s database.

FORMAT

stetus = para_Jlockv_off (lock_neme_id)

RETURNS
type. integer*4 status condition
_access. wriie only
mechanism. by value
ARGUMENTS
LOCK_NAME_1D
type. ‘integer*2 (12)
access: read/vwrite
mechanism. by reference

description.
lock_name_id contains the id code

needed used to refer to the lock.
The first word of lock_name_id
contains the status code returned by
this function. o

THE PARA SUBROUTINES Page 2-24

PARA_SUBLOCK_OFF —— Null" locks

Para_sublock_off converts all the sublocks of a parent
Jock to null locks

FORMAT

status = para_sublock_off (parent_name_id)

-RETURNS
type. integer*4 status condition
access. write only
mechanism. by value

ARGUMENTS

PARENT_NAME_ID

type. integer*2 (4)
access. read/write
mechanism: by reference

description:
parent_name_id contains the id code
needed used to refer to the parent
lock. The first word of
parent_name_id conteains the status
code returned by this function.

THE PARA SUBROUTINES Page 2-25

PARA_SUBLOCKV_OFF —— Null locks

Pare_sublockv_off converts all the sublocks of e parent
lock to null locks and stores 8 words of data from words 5
through 12 of parent_name_id 1nto the distributed lock
manager ‘s database for each sublock.

FORMAT

status = para_sublockv_of! (parent_name_id)

RETURNS
type. integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS ‘
PARENT_NAME_ID
type: integer*2 (12)
access. read/write
mechanism. by reference

description:
: parent_name_id contains the id code
needed used to refer to the parent
lock. The first word of
parent_name_id contains the status
code returned by this function.

THE PARA SUBROUTINES Page 2-26

PARA_LOCK_REL — Release a lock

Para_lock_off releases the lock referred to by
lock_neme_i1d. Lock_name_1d was returned by
Pare_lock_asgn.

FORMAT

stetus = para_lock_rel (lock_name_id)

RETURNS
tvpe. integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS
LOCK_NAME_1ID
type: integer®2 (4)
access: read only
mechanism. by reference

description:
LOCK_NAME_1D contains the ID code of

the lock to be released.

THE PARA SUBROUTINES Page 2-27

PARA_SUBLOCKE_REL —— Release sublocks

Pare_sublock_re] releases all the sublocks of & parent
lock which 1s referenced by parent_name_id.

FORMAT

status = para_sublock_rel (parent_name_id)

RETURNS
type. integer*4 status condition
access. write only
mechanism. by value

ARGUMENTS

PARENT_NAME_1D

tyvpe: integer*2 (4)
access: read only
mechanism: by reference

THE PARA SUBROUTINES Page 2-28

PARA_LOCK_REL_ALL —— Release All Locks

Pera_lock_rel_all relesses all locks held by the current
process

FORMAT

stetus = para_lock_rel_all

RETURNS
type. integer*4 status condition
access. write only
mechanism. by value

ARGUMENTS

none

THE PARA SUBROUTINES Page 2-29

PARA_MBX —- Create & Mailbox

Pera_mbx opens or creates the mail box MAIL_BOX for the
calling process MEY_channel 1s returned as the logical
channel number to reed from and write to when using the
mallbox.

FORMAT

status = pera_mbx (mai1]l_box, message_size. mbx_channel)

mechanism.

MESSAGE_SIZE

type:
access:
mechanism:

MBX_CHANNEL

type:
access:
mechanism:

RETURNS
type. integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS
MAIL_BOX
type: character
access: read only

by reference

integer*4
read only
by reference

integer*4
write only
by reference

THE PARA SUBROUTINES Page 2-30

PARA_MBY_WRT —— Write a Message to the Mailbox

Pare_mbx_wrt sends & message to the meilbox The first
prucess 1n the read mailbox queue wil] get the message
Message_si1ze is the length (in bvtes) of maillbox messages.
This 1s an esynchronous routine.

FORMAT

status = para_mbx_wrt (mbx_channel. message_size.
mbx_message, qio_status)

RETURNS
type integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS
MBX_CHANNEL
type. integer*4
access. read only
mechanism. by reference

MESSAGE_SIZE

type: integer*4

access. . read only
mechanism. by reference
MBX_MESSAGE

type. byte* MESSAGE_SIZE
access. read only

mechanism. by reference

THE PARA SUBROUTINES Page 2-31

QIO_STATUS

type. integer*2(4)
access. write only
mechani sm by reference

THE PARA SUBROUTINES Page 2-32

PARA_MBX_RD —— Reed & Message from the Mailbox

Para_mbx_rd reads & message from the meilbox. 1If there 1is
no message then the process waits 1n a queue with other
processes which are requesting & message from this
mailbox. When a message arrives the first process in the
queue takes 1t and continues processing. the next message
goes to the next process i1n the queue. etc. Message_size
is the length (in bytes) of meilbox messages.

FORMAT

status = pare_mbx_rd (mbx_chennel., message_size.
mbx_message. qlo_status)

RETURNS
type: ‘ . integer*4 status condition
access: write only
mechanism: by value
ARGUMENTS
MBX_CHANNEL
type: integer*4
access: ' read only
mechanism. by reference

MESSAGE_SIZE

type: integer"4
access: read only
mechanism: by reference

MBX_MESSAGE

THE PARA SUBROUTINES Page 2-33

type: byte* MESSAGE_SIZE
access: write only
mechanism: by reference

QIO_STATUS

type. integer*2(4)
access: write only

mechanism: - by reference

THE PARA SUBROUTINES Page 2-34

PARA_WAKEUP_MAP — Initiali1ze Wakeup for Counting Semaphores

Pere_wakeup_mep maps to the svstem wakeup mailbox This
1s an 1nitialization routine which 1s needed for the
PARA_V subroutine. PARA_V uses this facility to wakeup
Jobs on multiple processors. This routine should be
called at the beginning of each program that uses PARA_V.

FORMAT

status = para_wakeup_map ()

RETURNS
type. integer*4 status condition
access. write only

mechanism. by value

THE PARA SUBROUTINES Page 2-35

PARA_SEM%_INIT'-—— Initrelize a Counting Semaphore

Pare_seme_1nit initializes & counting semaphore to ready
tavalleble) :

FORMAT

status = para_sema_init (semaphore, semaphore_queue,
mex_entries)

RETURNS
-trpe integer*4 status condition
access. write only
mechanism. by value
ARGUMENTS
SEMAPHORE
type. integer*4 (2)
access: read/write
mechanism. by reference

descraption.
Pair of longwords in shared memory.

First longword contains the status of
the semaphore (1. available, <= 0.
in use), second longword points to
the associated semaphore queue.

SEMAPHORE_QUEUE

type: integer*4 (4 " maxentries + 1)
access: read/write

mechanism. by reference

description:
Shared circularly linked list used to

queue process PIDs end their
nodenames when they are waiting for a

THE PARA SUBROUTINES

MAX_ENTRIES

type.
access
mechanism.

descraiption.

Page 2-36

semaphore.

integer*4
read only
by reference

Mexi1mum number of processes allowed
to be waiting for this semephore at
one time.

THE PARA SUBROUTINES Page 2-37

PARA_P — Obtesin a Counting Semaphore

Para_P ottains the semaphore. 1f the semephore 1s
availlabie then this routine returns. else 1t waits 1n a
gqueue unti] the semaphore 1s avallable.

NOTE. Locks. Counting semaphores and Binery semaphores
are very similar. They differ in that processes weiting
for a lock or counting semaphore wait in a queue and the
first process in the queue gets the lock when it is
released With binary semaphores any one of the weaiting
processes may get 1t. With locks only the processes that
turned 1t on can turn 1t off{. with semaphores any
processes can turn 1t off once it 1s on. Locks are slower
than semaphores but they provide more security and the
eabi1lity to be defined as hierarchy of locks. There are 32
binary semaphores and an unlimited number of locks and
counti1ng semaphores availeble.

FORMAT

status = para_p (semeaphore)

RETURNS
type. integer*4 status condition
access: write only
mechanism. by value
ARGUMENTS
SEMAPHORE
type: integer*4 (2)
access: read/write

mechanism. by reference

THE PARA SUBROUTINES K Page 2-38

PARA_V —— Relinquish a Counting Semaphore .

Pare_V relinquishes e semaphore and returns. If other
processes are welting for the semaphore then the first
process on the semaphore queue 1s woken up.

FORMAT

status = para_v(semaphore)

RETURNS
type. integer*4 status condition
access. write only
mechanism by value
ARGUMENTS
SEMAPHORE |
type. integer*4 (2)
access. read/write

mechanism. by reference

THE PARA SUBROUTINES Page 2-39

PARA_FORK —— Submit a Job

Perea_fork submits a job to the SYSERATCH batch queue for
execution .

FORMAT
status = para_fork (process_name. num. [parl,...parNum])
RETURNS
type. integer*4 status condition on feilure
betch queue entry number on success
access write only
mechanism. by value
ARGUMENTS
PROCESS_NAME
type. character
access: read only
mechanism: by descraptor

description.
name of the command file (without the

suffix) to be submitted.

NUM

type. byte range 0..8
access. read only
mechanism. by reference

description.
Number of pearameters, PAR1...PARNUM,

passed to the batch job.

THE PARA SUBROUTINES Page 2-40

Parl ... PARNUM

“type. character
access. read only
mechanism. by descriptor

description. passed to batch job

CHAPTER 3

THE SHARE PROGRAM

THE SHARE PROGRAM Page 3-2

c'..'..'..l""....'...O....'....‘..'-O.".'!.'."Q‘..'.'.'..‘..".".".l
.

c'

c.

c..

c® PROGRAM SHARE
C.

c.'

c* .
c..""""""!'O.'l.'....‘...".'l...!"'.'Ql.'..Il‘."'..'.".."...l.

program share
Semple Parallel Processing Application

Developed by : John Sopka. David Walp, Roger Anderson. Nancy Werner
_Edwin Hastings

Created : 8 1/84

Purpose.

This epplicetion is intended to run in multiple processes on
multiple processors concurrently.

Scheduling 15 via & series of mailbox messages. Critical
sections are locked using the system lock manager. Data
15 shared in the shared memory.

The application is designed to simulate a simple._partial
differential equation solution using a finite difference
method which propagates i1n a wave like manner through a
series of subregions within an array.

or odd numbered regions computed at one time.

Region 1

Region 2

Region 3

Region 4

| .
| | Region N

The calculations will be performed over the entire region

[
c
c
c
c
c
c
c
Cc
(4
c
c
c
c
c
c
c
c
c
[+
c
c
¢ Boundery conditions are handled by having only even numbered
c
c
c
c
c
c
[
c
c
c
c
c
c
c
c
c
c
c
c
c for time steps of length DeltaT from 0 to Tmaximum.
c

THE SHARE PROGRAM Page 3-3

¢ VMS system symbo} definitions
include ' ($SSDEF)’ ! VMS system feilure and status codes
c.".'.'......l.".....l.""......'.Q."..'.'.."'.'.O'.'.‘..‘...'....l'

cl
c*: Tyvpe Definitions for Mathematical Solution *
cl L
c,-------.l-.------Inll!-.!..!'.l.l!!ntl!'l!!ll-vl-lIl..l'l-."-.l'l'lllll

integer regionsize, arraysize, Nregions. DeltaT. Tmaximum

perameter (regionsize = 10,

1 arraysize = 100,

2 Nregions = arraysize/regionsize,'! § regions

3 DeltaT = 1.

4 Tmaximum = 100,

5 efnup = 10)

¢ Date to be shared by multiple cooperating processes

integer array

common /date array(arraysize.arraysize)
! this is the problem date erray which
! should appear 1n shared memory for
! manipulation by all cooperating
! processes.

integer donearray, lastregion, lastinterval

common ‘sched = donearray(Nregions).! scheduling common block.

1 lastregion. ! should be in shared memory
2 lastinterval. ! to keep track of work

3 initdone ! already done

common /newpage, dummy ! this forces date defined after

! the shared common blocks

' to be in local memory
c'.'."""l'!.'...'""..!"0‘..'."!'.'Q"-"'I""...".'.‘.l'.'..-'..
L]

cl
c* Tvpe Definitions for Parallel Processing *
c! L4
c""..'.'."'l.".l"."'!."'.."'.'l'...'..........'....l"..."......

integer=2 maxmesgsize ! for mailbox messages

character*(*)} mbxname ! between processes

parameter (mbxneme = 'MAILBOX', maxmesgsize = 20)

integer paralockasgn, ! The PARAllel processing routines

2 paralockon, ! are functions

3 peralockoff, !

4 paralockrel, ! A normal return is SS$NORMAL.

5 parambx, .

6 parambxwrt,

7 parambxrd,

8 paraglobalmapzro,

9 paraglobalremove

integer getnodename ! returns the current network node

integer datalocation(2), schedlocation(2)
! addresses of data to map to Global Sections
c date local to each process
integer status
integer*2 mbxstatus(4). mbxchan
¢ Status block for Locks
. integer*2 gscnameid(4). ! Global SeCtion lock

THE SHARE PROGRAM Page 3-4

1 1initnameid(4), ! INITialize lock

2 updatenameid(4)! UPDATE lock

character*15 nodename
¢ BYTEMSG is the mailbox message shared between processes.

byte bytemsg(maxmesgsize), msgtype

integer timeinterval. workregion.

1 timeintervalx. workregionx

equivalence (bytemsg(1). timeintervalx).

1 (bytemsg(5), workregionx).

2 (bytemsg(9), msgtype)
c-.'ll‘!"."l.'...'."."'...‘.!'.'...."-..."l'..""....'!...'.'.O...
c* .
c* End of Definitions .
c® . *

c..'-"'...'..l."l".""..."'........"......."..'."'.'.'."'.".'.'

status = getnodename(2DESCR(nodename)) ! get local node name
1f (status .ne. ss$normal) call lib$signal (%Nval(status))
print 9988.nodename -

C.Ql--l'!.l..l'l'.."'...-'......l'..'!'..‘l.l..'.."..'..l"!l'.l"!"l'

c®]

c* ASsiGN all the locks
c*-
cl'.-l'......."'..'...."..-."..l."'ll"..'l..l.'."......"'.'.-""‘

status = paralockasgn('GSCLOCK',gscnameid)

1f (status .ne. ss$normal) call lib$signal (%val(status))

1f (gscnameid(1) .ne. ss$normal)

1 call lib$signal (%ival (gscnameid(1)))

status = paralockasgn(INITLOCK'.initnameid) -

if (status .ne. sstnormal) cal) lib$signal (%val(status))

if (1nitnamei1d(1) .ne. ss$normal)

1 call lib¥signal (val(initnameid(1)))

status = paralockasgn(UPDATELOCK’ ,updatename:1d’)

if (status .ne. ss$normal) call lib$signal (%ival(status))

if (updetenameid(1) .ne. ss$normal)

1 call lib¢signal (%val (updatenameid(1)))

c..".."."‘....."'.""."'.'.'...."..'...“"'..'....'."!l"."'..'

c. »
c* Start Critical Region Create Global SeCtions o
C. []
c.""."!'....""""'.'...'.".".-..O".‘""..'..."'.'.-'Ql"'..-.'

status = paralockon(gscnameid)! lock critical section or

! wait for lock to be freed

¢ Check the status code to make sure that the subroutine executed 0K

if (status .ne. ss$normel) call lib¥signal (%val(status))
¢ Check the status to make sure that we obtained the LOCK.

if (gscname1d(1) .ne. ss$normal)

1 call lib$signal(%ival (gscnameid(1)))
¢ Create global section for common block DATA

datalocation(1) = %loc(array(1,1))

! get addresses of first and last

elements of the common block.
data between these address will
be put i1nto a global section and

'
H
'
! shared memory

THE SHARE PROGRAM Page 3-5

dataloéation(z) = Zloc(array(arraysize, arraysize) }+4
status = pareglobelmapzro('DATASEC’ ,datalocation(1),

1 datalocation(2), 'DATASEC.DAT')
1f ((status .ne. ss$normal) .and. (status .ne. ss$created))
1 call lib$signal (Zval(status))

' a return code of “section created” 1s Ok.
¢ Creale global section for common block SCHED
schedlocation(l) = %loc(donearray(1))
schedlocation(2) = %loc(1nitdone)+4
status = paraglobalmapzro(’'SCHEDSEC' .schedlocation(1),

1 schedlocation(2), 'SCHEDSEC .DAT’)
if ((status .ne. ss¥normal) .and. (status .ne. ss$created))
1 call lib¥signal (%val(status))

¢ unlock the initialization lock obtained above

status = paralockoff(gscnameid)

1f (status .ne. ss$normal) call lib¥signal(%val(status))
c.'.""..l...."'.'."...'.".'""-....‘..'.....'.!"‘.'...'...'."'..'
c' . "
c* Exit Cratical Region Global SeCtion
c.
c.l'.!!.'.l..l-l"'ll.'.'.'..'..."'.l..".."..'0"'.’..'.l.'.."'...""

¢ Create scheduling mei1lbox
status = parambx(%idescr(mbxname) .maxmesgsize , mbxchan)
1f (status .ne. ss$normal) call lib$signal (%val(status))

c.'""".l‘...""..l"'......'.'.'.1'...."...‘..".....'."'."""'..'
c* .
c* Start Critical Region Initialize
c* . T .

C."'....'..-...'..'.......'..'.....‘....’.'.-'......'..'.'....'.".'...'.

status = paralockon(initnameid)! lock critical region or
! wajt for lock to be freed
1f (status .ne. ss$normal) call lib§signal (%val(status))
1f (initnameid(1) .ne. ss$normal)
1 call lib$signal (%val(initnameid(1)))

if (initdone..eq. 0) then ! Do the initialization

lastregion = Nregions ' Initialize synchronization date

lastinterval = Tmaximum
do 10 1 =1, Nregions . ! Set number of regions completed to 0

10 donearray(1) = 0

do 20 j =1, arraysize ! Init. problem data for time 0
do 20 1 =1, arraysize .
20 array{ i, j) = 0.0
msgtype=1 ! Send first message to start
workregionx = 1 ! the processes
timeintervalx = 1
c Send the scheduling message to the mailbox

status=parambxwrt (mbxchan, maxmesgsize, bytemsg, mbxstatus)
if (status .ne. ss$normal) cell lib$signal(%ival(status))
if (mbxstatus(l) .ne. ss$normel)
1 call lib$signal(%Zvel(mbxstatus(1)))
initdone = 1 ! Let future processes know that init hes been done

end if

THE SHARE PROGRAM Page 3-6

c.
c'
c.
(l

c..

status = paralockoff(initnameid) ! Release lock obtained above
if (status .ne. ss¥normal) call lib$signal(Z%val(status))

AR R R AR NN EN R AR AN RRRN AR RN ER RN EANNRREENANERNRENENERNENENERNNERNDR,]
L]
LJ

Exit Critical Region Initialize

L]
I AR EERERABREREIEEAE AR A A ERE RSN AENERENENEENEEEENEERNERNENENENERNNNNENNRNENIENENHJNRNHZE]

(AR NRNENENNEANENEREEZEE AL RE N SE N NN R RN ENRENRESNANENENENNERRENE NN ENERENRRERNNR]

Begin Program's Main Work

I AR AR SRR R RS AN AN RNR SN ENEY RN RN AR YRR ENREEN SRR REERENNNDEY)

100 cont inue ! wait for a messege containing work to do

C

50

€
Sp

c
th

c..
c.
c-
c.
c'

Read scheduling message
status=perambxrd(mbxchan.maxmesgsize ,bytemsg .mbxstatus)

1f (status .ne. ss$normal) call lib$§signal (Tval(status))

1f (mbxstatus(l) .ne. ss$normal)call lib%$signédl(val (mbxstatus(1)))
1f (msgtvpe .eq. 2) goto 900 ' 2 is an Exit Program Command

1f (msgtype .eq. 1)} goto 500 ' 1 is an Work On Region Command

type . '%Error — Unknown Commend read from scheduling meilbox.’
call ex1t(1
0 cont 1nue

workregion = workregionx ! workregionx and timeintervalx were
timeinterval timeintervelx! read from the mailbox into record

! byte_msg
Perform calculation for a time interval on one region of the problem

ace
call work(timeinterval,

1 (workregion - 1)°regionsize + 1,

2 workregion * regionsize,

3 arraysize, arraysize)

1f the entire problem has been computed over the full range of time

en exit
if ((workregion .eq. lastregion)
1 .and. (timeinterval .eq. lastinterval)) goto 900

(EE AN AR AR A NS SERE RN SRS RSN RN AR LR ERARARARRENRREEEENERENENENNENN;

Enter Critical Section for Updating Scheduling Data

I ER A A RN A NS NN RES R AN NAN AN NSREN SRS AR NN EREARRARRERERRARRREEREREEEENNS NN

status = paralockon(updatenameid)

if (status .ne. ss¥normal) call lib¥signal(%vel(status))

1f (updatenameid(l) .ne. ss$normal)

1 call lib$signel(%val (updatenameid(1)))

donearray(workregion) = timeinterval ! we have done workregion for
! this time step

if ((workregion .gt. 2)

1 .and. (timeinterval .1t. Tmaximum)) then

if (donearray(workregion-2) .eq. timeinterval+l) then

Schedule work for previous region for next time step
msgtype =1

THE SHARE PROGRAM Page 3-7

workregionx = workregion-1l
timeintervalx = timeinterval+l
status=parambxwrt (mbxchean,maxmesgsize.bytemsg .mbxstatus)
1f (status .ne. ss¥normal) call lib¥signal(%vel(status))
if (mbxstatus(l) .ne. ss$normal)
1 cal]l l1b%$signal(%val (mbxstatus(1)))
end 1f ' work for previous region for next time step
else 1f ((workregion .eq. 2)

1 .end. (timeinterval .1t. Tmaximum)) then
c Schedule work for current region for next time step
msgtype =1

workregionx =1
timeintervalx = timeinterval+l
status=parambxwrt (mbxchan,maxmesgsize,bytemsg.mbxstatus)
1{ (status .ne. ss¥normal) call lib$signal(%vel(status))
1f (mbxstatus(l) .ne. ss$normal)

1) call lib¥signal(%val (mbxstatus(1)))
end if ! work for current region for next time step
1f (workregion .1L. Nregions-1) then
1f (donearray(workregion+2) .eq. timeinterval-1) then
c Schedule work for next region for current time step
msgtype =1

" workregionx = workregion+l]
timeintervalx = timeinterval
status=parambxwrt (mbxchan.mexmesgsize.bytemsg .mbxstatus)
if «status .ne. ss$normal) call lib§signel(Zval(status))
if (mbxstatus(l) .ne. ss$normal)

1 - call 1ib$signal(%val(mbxstatus(1)))
end if ! work for next region for current time step
else if (workregion .eq. Nregions-1) then
c Schedule work for last region current time step
msgtype =1

workregionx = Nregions
timeintervalx = timeinterval
status=parambxwrt (mbxchen,maxmesgsize,bytemsg , mbxstatus)
if (status .ne. ss$normal) call lib$signal(%val(status))
if (mbxstatus(l) .ne. ss$normal) -
1 call lib$signal(%val (mbxstatus(1l)))
end if ! work for last region current time step
status = paralockoff(updatenameid) ! release the critical lock
1f (stetus .ne. ss$normal) call lib$signal(%val(status))

c'....'"....-..'....""."'.!..!l."..'.l.'..'.Q.....'.".".'!‘..".l!
L}

c'
c* End of Critical Section for Updating Scheduling Data .
c” .
c'."""..'.I'.'."""'.".l.'!.."'.'t.'.".1..'!"'.!.0!"'.l.'!.m'.'
go to 100
c“"'0.0..'...!".Q'.".l."'.‘.0....!.!'.."'!.'!'..."!...'.1..'..!."
c” »
c. . »
c* Exit Routine *
c” .
c* .
[}

c.!'".l.'..‘l.'.!.!"".""l'.!...".."'...‘."""'!'.'Q"'.l'."'.'

THE SHARE PROGRAM Page 3-8

900 continue
msgtype =2 ! Write to the mailbox to kill other processes
workregionx = 0
timeintervalx = 0
status=parambxwrt (mbxchan.maxmesgsize,bytemsg.mbxstatus)
1f ¢ status .ne ss¥normal) call lib¥signal(“val(status))
1f (mbxstatus(l) .ne. ss$normal)
1 call lib$signal(%ival (mbxstatus(1)))

c-'l"l.'-"ll"-.I"l"'..l.'l..'l.'l."..l'l.'l'l!'.!l....'ll..'.-..-..
»

c.
c* Start of Critical Section for Deleting Global Sections
»
:.'........"'."'-...'..'..'....."......."...l;"".‘."..‘.."'...'.'
status = paralockon(gscnameid)! lock critical region or
! wait for lock to be freed
status = paraglobalremove('DATASEC) ! remove global section DATASEC
1f (status .eq. ss$notcreator) then
type *.
1 'ZINFO—Falled to delete Global Section DATASEC: Not creator VAX.~
else 1f (status .eq. ss$nosuchsec) then
type *.
1 '"%INFO—Feiled to delete Global Section DATASEC. No such section.’

else 1f (status .eq ss¥normal) then
type *. 'TINFO—Global Section DATASEC deleted.’

else
call lib¥signal (<val(status))
endif
status = paraglobalremove(SCHEDSEC')' remoye global secition SCHEDSEC

if (status .eq. ss¥notcreator) then

type °*.
1 '"ZINFO—Failed to delete Global Section SCHEDSEC: Not Creator VAX.'

else 1f (status .eq. ss$nosuchsec) then

type *, .
-1 '%INFO—Failed to delete Global Section SCHEDSEC. No such section.’
else if (status .eq. ss$normal) then

type *. %INFO—Global Section SCHEDSEC deleted.’

else
call lib$signal (%val(status))

endif

status = paralockoff(gscnameid) ! release the critical lock

1f (status .me. ss$normal) call lib¥signal(%val(status))
c'.l'!".l..""‘.'.!l.."""...'".Q'.!"ll.l.'l'1!..."..!""""""
c” *
c* End of Critical Section for Deleting Global Sections
c” .
c'."..‘."..'..l.-"...'.'...'.."...'.'..'."0.“."..'l...'.'.""""

cl..!'....!.'!.".".‘.'.0'.'....!".".."."'."‘..!"'."'Q'..'.'..'..
c* .
c* REL all the locks and end the program
c'

c'.'..!'.‘..-."..'..'.'!"O."..'..-"'Q"...'."""."'....'!"'."".

.

status = paralockrel(gscnameid)
if (status .ne. ss$normal) call lib$signal (Zval(status))
status = paralockrel(initnameid)

THE SHARE PROGRAM Page 3-9

1f (status .ne. ss§normel) call lib$signal (%val(status))
status = paralockrel (updatenameid)

1f (status .ne. ss$normal) call li1b$signal (%val(status))
print 9988. nodename

call exit
¢ Format statements
2000 FORMAT(A4.18.18)
99868 FORMAT(° Share execution started on node ',A15/)
9989 FORMAT(/' Share execution completed on node ',A15/)

end ! program share

c.'l.....'...-'...."'.l.'l'l'.".."..Q...'..'Q..l'l.'...'.'.'.'........

c* L]

c_.

c* SUBROUTINE WORHK

»
c-‘"'..'-."--".."..'"'..'..'..l‘..'.'.".'..'l"......‘."-‘-......l

subroutine work(timeinterval. startrow. endrow.
1 rowlength. lastrow)

This routine checks the array for validity up to this

point. If the data 1n region 'region'-1 equals ‘'timeinterval’
and region ‘region’' and ‘region’'+l equal 'timeinterval ‘-1 then
the data is velid and the processes are assumed to be

running correctly together.

1f an error is found then the error is written to the
file on unit 1.

Parameters
Timeinterval — time interval to verify for.
Startrow — first row i1n region to check
Endrow - last row in region to check
Rowlength - length of each row
Lastrow — last row in the array

nOoOONMNODODDODODDNDDDNANANNNAARN

¢ problem parameters
integer regionsize, arraysize, Nregions. DeltaT. Tmaximum

parameter (regionsize = 10,
1 arraysize = 100,
2 Nregions = arraysize/regionsize,
3 DeltaT = 1,
4 Tmaximum = 100)

integer arrayx

common /data/ array(arraysize,arraysize)
! this is the problem data array which

! should appear in shared memory for
! manipulation by all cooperating
- ! processes.
integer donearray. lastregion. lastinterval
common /sched/ donearray(Nregions),
1 lastregion,

THE SHARE PROGRAM Page 3-10

2 lastinterval,

3 initdone
common /newpage/ dummy ! this forces data defined after the shared
! common blocks i1nto local memory
integer regionlen ' length of the region.
¢ 1nput parameters
integer timeinterval. startrow. endrow. rowlength. lastrow

regionlen = endrow — startrow + 1
¢ check the region for timeinterval - 1
if (startrow - regionlen .ge. 1) then
do 10 i= startrow-regionlen, endrow-regionlen
do 20)= 1. rowlength
if (array(1,)) .ne. timeinterval) then
print 100, startrow, 1,j,timeinterval,

1 arrevi(i.))
goto 35
"endif

20 cont inue
10 cont 1nue

end:if
¢ Check the region for timeinterval now
35 cont 1nue

do 30 i= startrow. endrow
do 40)= 1, rowlength
i1f (array(i.,)) .ne. (timeinterval - 1)) then
print 110. startrow. i,j,timeinterval,

1 array(i.))
goto 45 . . .-
endif
40 cont inue
30 continue
¢ Check the region for timeinterval+l
45 continue

if (startrow + regionlen .1t. lastrow) then
do 50 i= startrow+regionlen. endrow+regionlen
do 60 j= 1. rowlength
if (array(i,j) .ne. (timeinterval - 1)) then
print 120, startrow, i,j.timeinterval,

1 array(i,j)
goto 65
endi{

60 cont inue
50 continue

endif
¢ replace the central rows
65 cont inue

do 70 i= startrow. endrow:
do 80 j= 1, rowlength
array(i,j) = timeinterval

80 continue

7 - continue

100 format('%ZError — d t-1 : str ',i4," i '",14.’ j ',i4,
1 ' timeint .7 ,i4, " a(i,j) *, 14)

110 format('%Error - d t costr ",14, 1 .14, § ".i4,

THE SHARE PROGRAM Page 3-11

1 " timeint " ,i4, ' a(i,j) . 14)

120 format ('%Error - d t+1 : str ',i4." i '.i4,) .14,
1 " timeint ',i4. ' a(i,j) ', i4)
return

end

CHAPTER 4

RUNNING A PARALLEL PROGRAM

Below is a transcript of a terminal session to setup. compile,
Jink, and run the share program. The steps for doing so are
shown below and then described on the following page. All
input that was typed by the user 1s underlined with annotations
being surrounded by braces ("§{}{").

Example 1

Username: USER
Password.
Welcome to VAX,/VMS version 4.0 on node VAXI
Last interactive login.on Monday, 15-0CT-1984 14.07
Last non—-interactive login on Thursday, 11-0CT-1984 09:48

$ parasetup
Parasetup Procedure, at 14:08:00

Name of program (process): share

Is this a restart job [N]:.

Enter name of shared memory JATTIC,LOFT,Nonel [ATTlC]
Enter name of shared Global Section or c¢/r. DATASEC
Enter name of shared Global Section or c¢/r: SCHEDSEC
Enter name of shared Global Section or c/r.

Enter name of shared Mailbox or c¢/r: MAILBOX

Enter name of shared Meilbox or c/r:

Enter neme of Shared Common Event Flag Cluster or c/r.

To define shared logicals interactively type. @LOGICALSHARE
To submit your program use the PARASUBMIT command.

Finished at 14:08:21
$ fortran share

$ paralink
Paralink Procedure, started at 14:08:48

Enter process name to link: share .
Enter common block name or c/r.

Enter common block name or c¢/r:. sched
Enter common block name or c/r. pewpage

RUNNING A PARALLEL PROGRAM

Enter common block name or c/r:
Finished at 14:.09.02

$ type share .map

-

Page 4-2

} Some listing omitted }

g

' Program Section Synopsis

-4

e
I g

Psect Name Module Name Base End

$PDATA 00000200 0000050B
SHARE 00000200 0000043E
WORK 00000440 00000508

$LOCAL 00000600 00000A87
SHARE 00000600 D00O007TBF
WORK 000007C0O 000007CB

GET_NODENAME 000007CC 0000081B
PARA_GLOBAL_MAP_ZRO

0000081C OOOOOBEF
PARA_GLOBAL_REMOVE

000008F0 0000090B

PARA_LOCK_OFF 0000090C 0000093B
PARA_LOCK_ON 0000093C 0000098F
PARA_MBY. 00000990 00000SBB
PARA_MBX_RD 000009BC 00000AIF
PARA_MBY_WRT 00000A20 00000ABT
DATA 00000C00 0000AB3F
"SHARE | 00000C00 0000AB3F
WORK 00000C00 0000AB3F
NEWPAGE 0000AAOO 00O0OAAO3
SHARE 0000AAOO 000DAAO3
WORK 0000AAO0 0O00AAOQ3
SCHED "0000ACO0 0000AC33
SHARE 0000ACO0 0000AC33
WORK D000ACO0 0000AC33

$ newfale
Newfile Procedure, started at 14:16.02

File to create or c/r: datasec.dat

Size in bytes: 40000 } gotten from DATA in the map listing |

Length

0000030C
0000023F
000000C9
00000488
000001C0O
0000000C
00000050

000000D4

0000001C
00000030
00000054
0000002C
00000064
00000068
00009C40
00009C40
00008C40
00000004
00000004
00000004
00000034
00000034
00000034

File DATASEC .DAT created with a size of 79 blocks.

File to create or c/r: schedsec.dat

Size 1n bvtes: 52 §{ gotten from SCHED in the map listing }

File SCHEDSEC.DAT created with a size of 1 blocks.

File to create or c/r:

Finished at 14:16:30

¢ parasubmit

Parasubmit Procedure, started at 14:09:46

Name of program: share
Number of jobs [1]: 4
Start after [current time 14:09:49]: 14:.11

-

S S S N N S, p o~ — o o~

780.
575.
201.
1160.
448.
12.
80.

212.

28.
48.

84
44.
100.
104.
40000.
40000.
40000.

52.
52.
52.

S

N Nt St Sttt s S g St gt o’ ‘g gt e’

RUNNING A PARALLEL PROGRAM

Queue [sys$batch].

To stop running jobs type @SHAREDELETE
After stopping jobs tvpe REMOVEGLOBAL

Finished at 14.10 06

$ shb
Generic batch queue SYS$BATCH

Jobname Username Entry Status

RUNSHARE ED 886 Holding until
15-0CT-1984 14.11 _

RUNSHARE ED " 887 Holding until
15-0CT-1984 14.11

RUNSHARE ED 888 Holding until
15-0CT-1984 14.11

RUNSHARE ED 889 Holding until

15-0CT-1984 14.11

Batch queue VAX1$BATCH, on VAX1..
Batch queue VAX2$BATCH. on VAXZ2..
Batch queue VAX3$BATCH. on VAX3..
Batch queue VAX4$BATCH, on VAX4:.

¢ show time]
15~0CT-1984 14:10.50

§ shb
Generic batch queue SYS$BATCH

Batch queue VAX1$BATCH. on VAX1::

Jobname Username Entry Status
RUNSHARE ED 886 Executing

Batch queue VAX2$BATCH, on VAX2:.

Jobname Username Entry Status
RUNSHARE ED 887 Executing

Batch queue VAX3$BATCH, on VAX3:.

Jobname Username Entry Status
RUNSHARE ED 888 Executing

Batch queue VAX4$BATCH. on VAX4::

Jobname Username Entry Status

Page 4-3

RUNNING A PARALLEL PROGRAM Page 4-4

RUNSHARE ED 889 Executing

$ show time
15~0CT-1984 14:11:17
$

When running the program after the first setup the process name
can be given after the paralink to avoid all the questions

being asked.

Example 2

$ paralink share
Paralink Procedure. started at 15:09:.06

Finished at 15.10.12
$

RUNNING A PARALLEL PROGRAM Page 4-5
DESCRIPTION OF COMMANDS :

4.1 DESCRIPTION OF COMMANDS

4.1.1 Newfale

Newfi1le creates & file of & given size This 1s used
because global sections need files as a backup disk storage.
Find the size for the file in the map listing that is created
by the linker. An example is shown about.

4.1.2 Paralink

Paralink links your with the Para Library. If vou give a
program name on the command line (as shown in example 2) then
Parelink uses a file thet contains all the options 1t needs.
If vou don't give a program name (as shown 1n example 1) then
Paralink will ask vou for 1nformation it needs to reasdvy common
blocks for the shared memory.

4.1.3 ParalinkD

ParalinkD eadds the VAX Symbolic Debugger into your
program. The instructions for ParalinkD are the same as for.
Paralink. In order to take full advantage of the debugger you
should compile your program with the /DEBUG switch.

4.1.4 Parasetup

Parasetup creates a file used when you run your program
interactively or in batch. The created file defines
privileges, symbols. and logicel names needed to run parallel

programs.

4.1.5 Parasubmit

Parasubmit submits your program to the batch queue to run.
You must have run Parasetup before running your job.

4.1.6 Removeglobal

Removeglobal removes global sections that may heve been
left in the shared memory if you aborted your program during
debugging.

APPENDIX A

GLOSSARY

CRITICAL REGION

A section of code that 1s surrounded by locks or latches
because multiple processes executing it at the same time would
cause 1ndeterminate results. Critical regions must be
1denti1fi1ed by the programmer and can be locked with the
para_lock_assign. pare_lock_on, pare_lock_off. and
para_lock_deassign subroutines or the latch routines.
para_latches_init. pare_latch_init. para_latch_on. and
para_latch_off.

MATB0

The bﬁC shared ﬁemory unit controller.' The VAX 11/786—; has
two MA7B0s each with 2mb for a total of 4mb (million bytes)
shared memo S

EVENT

Change in process status or the occurrence of some activity
that concerns single or multiple processes. Events can either
be waited for or they can occur asynchronously.

EVENT FLAG

A bit that can be set or cleared to indicate the occurrence of
the event associated with the flag. Event flags are used to
synchronize activities 1n a process or among many processes.
Programs can walt and use events with the para subroutines.

EVENT FLAG CLUSTER

A set of 32 event flags used for event posting. Four clusters
are defined for each process: two process—local cluster and
two common event flag cluster. Of the process—local event
flags, eight are reserved for system use. The common event
flags cen be shared among multiple processes. Para subroutines
give the user one common event cluster as event flags, and the
second event flag cluster as latches.

GLOSSARY Page A-2

GLOBAL SECTION

A date structure (e.g., FORTRAN global common) or shareable
1mage section potentially eveirlable to all processes 1n the
systenm. Access 1s prolected by privilege and‘or group number

of the UIC.

MA1LBOX

A softweare date structure that 1s treated as a record-oriented
device for general interprocess communication. Communication
using a mailbox 1s similar to other forms of device-independent
1/0. Senders write to a mailbox, the receiver reads from that

ma1lbox.
MULTIPORT MEMORY

A memory unit that can be connected to multiple processors and
that can contein resource (for example. mailboxes. common event
flag clusters. and global sections) for use by processes
running on different processors.

MUTEX

A semaphore that is used to control exclusive access to a

region of code that can share a data structure or other

resource. The mutex (mutual exclusion) semephore ensures that
only one process at a time has access to the region of code.

PRIVATE SECTION

An image section of a process that 1s not shareable among
processes. See also global section.

PROCESS

The basic entity scheduled by the system software that provides
the context in which an image executes. A process consists of
an address space and both hardware and software context.

GLOSSARY

Batch
see parasubmit

Clean up

see removeglobal
Commands. 4-5
Critical region, A-1

Debugging
see paralinkd

Event, A-1

Event flag, A-1l

Event flag cluster, A-1

Example
assign lock., 3-4
check status. 3-4
common block. 3-3
create maillbox., 3-5
global section. 3-5
lock off, 3-5
lock on, 3-4
node name, 3-4
read mailbox. 3-6
release lock, 3-8

remove global section, 3-8

write mailbox, 3-5
Global section, A-2

Linking program
see paralink

Ma780, A-1

Mailbox. A-2
Multiport memory. A-2
Mutex, A-2

Newfile, 4-5

Pare_event_off, 2-4
Para_event_on, 2-3

Page Index-1

INDEX

Pare_event_wait. 2-5
Para_events_init. 2-2
Para_fork. 2-39
Para_giobtal_mep. 2-6
Pare_global_map_zro. 2-8
Pere_global_remove, 2-10
Para_global_wrt. 2-11
Para_latch_init, 2-13
Para_latch_off. 2-15
Para_latch_on. 2-14
Pare_latches_init. 2-12
Pere_lock_asgn, 2-16
Para_lock_off. 2-22
Para_lock_on. 2-20
Para_lock_rel, 2-26
Para_lock_rel_all. 2-28
Para_lockv_off, 2-23
Pare_locky_on, 2-21
Para_mbx. 2-29
Para_mbx_rd. 2-32
Para_mbx_wrt, 2-30
Para_p. 2-37
Pare_sema_i1nit, 2-35
Pare_sublock_asgn. 2-18
Para_sublock_off, 2-24
Para_sublock_rel . 2-27
Para_sublockv_off. 2-25
Para_v, .2-38.
Pare_wakeup_map, 2-34
Parealink. 4-5
Paralinkd. 4-5
Parasetup. 4-5
Parasubmit, 4-5

Private section, A-2
Process, A-2

Removeglobal, 4-5

Shaered common block
see global section
Shared memory
see ma7B0

Overview of the
Livermore VAX 11/780-4

Parallel Processor

Roger Anderson
Edwin Hastings
Nancy Werner

Computing Research Group
Lawrence Livermore National Laboratory

L Erermoreperavek

Livermore

VAX 11/780-4
Hardware

CENTRAL

INTERCONNECT (CI) 5*;?:'50
HYPERCHANNEL VAX
117780 =
14mb

VAX |SHARED] VAX
11/780 | MEMORY | 11/780
14mb 4Mb 14mb

VAX .
11/780 |
16mb

Livermorepara\/@(

VAX 11/780-4 SYSTEM INFORMATION

e Uses Existing Hardware and Software

e Parallel Processor - 4 Vax 11/780
with local and shared memory

e VaxCluster supported under VMS 4.0
provides shared disks and
distributed lock manager using
70mb/sec Central Interconnect (CI).

e LLNL Vax 11/780-4 Configuration:

4 Vax 11/780, 14§mb memory each

e 1 MA780 4mb shared memory

e 1 HSCS0 CI disk controller

o 4 RA8O disks, 125mb each

o tape drive. line printer. Ethernet

o VYMS 4 FT2 operating system with
FORTRAN, Pascal, C, etc.

e Differences with VAX 11/782

[L[Fermoreperavesc

OUTLINE

1. Why Parallelism

2. VAX 11/780-4 System

3. Collaborators

4, Current Research at LLNL

S. Para Subroutines

6. Hand Coding Parallelism:
An Example

7. Conclusion

(M ez

HAND CODING PARALLELISM:

THE SHARE PROGRAM

e Detection of l;arallellsm _
e Granularity

e Speedup

e Stopping Conditions

. Error- Handling

e Debugging

e Testability / Reliability

L.ivermore garaNaX

L

CURRENT VAX 11/780-4
RESEARCH at LLNL

e Developing parallel system
libraries, the Para subroutines

e Recruiting Vax 11/780-4 users
e Planning Cray COS compatibility

» Parallel demonstration program
using shared and local memory

e Divide and Conquer Integration
e Run-Time Algorithm Selection
e SISAL Data Flow Language

e Parallel Algorithm Approach

,ivermorepzra\/@(

VAX 11/780-4 DEC COLLABORATORS

SITE STATE
LLNL Running
LBL Running [Maples]

Nasa Ames Running [Stevens]

CMU : 1st Running
2nd Negotiated

U Texas Negotiated [Browne]

DEC Planned

DEC Parallel Processing Conference
in November

L [Erermorere ek

THE PARA SUBROUTINES

e Mailboxes -~ Scheduling

e Global Sections - Shared Variables

e Event Flags - Barriers

e Locks | - Critical Sections
e Binary Semaphores (Latches)

e Counting Semaphores (P & V)

L [Eermoreper v

CONCLUSIONS

1. Description of the VAX 11/780-4

2. Research at LLNL

3. The Share Example

4. Experience and the Puture

Livermorepar&\(@(

UTILITIES :

COSCOMPLINK 7ASKNANME
COMPILE AND LINK EACH USER TASK (PROGRAM
TO THE COSSHARE LIBRARY

COSSETUP ROCTNAME [I'A.S'A’M;llﬂff.ﬂ 7/
SET UP COIMTMANG FILES FOR ROOT TASK AND
ALL NON RGOT TASKS

(needs to be done only once }

COSSUBMIT ROOCTNAME [AFTER_TIME]
START UP ROOT TASK AT TIME=AFTER_TINE
IF AFTER_TIMTE NOT PRESENT, START UP NOW

COSCLEANUP ROGTNALIE

REMOVES LEFT OVER BATCH JOBS AND

DELETES SHARED MEMORY ACCESS FOR THIS JOB
fneeds to be done ifjob exits abnormally]

E Livermore garazNaeX

SUBROUTINE DEFINITIONS:

CALL EYASGN (£VENTDATA)
ASSIGN, INITIALIZE FVENT

CALL EYREL(£VENTDATA)
IF THERE ARE WAITERS FOR EVENT —-- ERROR

OTHERWISE DEASSIGN THIS EVENT

CALL EYPOST(£VENTOATA)
POST EVENT

CALL EVCLEAR (£VENTDATA)
CLEAR EVENT

CALL EYWAIT (£VENTOATA)
WAIT FOR EVENT

LOGICAL = EVTEST (£VENTDATAJ
LOGICAL =.TRUE. IF EVENT WAS POSTED
LOGICAL = FALSE. IF EVENT WAS CLEAR

(L ermerereravic

SUBROUTINE DEFINITIONS:

CALL LOCKASGN (LOCKDATA)
ASSIGN, INITIALIZE LOCK

CALL LOCKREL { LOCKDATA)
IF THERE ARE LOCK WAITERS --- FRROR
OTHERWISE DEASSIGN THIS LOCK

CALL LOCKON(LOCKDATA)
IFLOCK IS BUSY WAIT, OTHERWISE GET LOCK

CALL LOCKOFF(LOCKDATAJ
RELINQUISH THE LOCK

LOGICAL = LOCKTEST(LOCAKBATA)
LOGICAL = TRUE. IF LOCK WAS ON, RETURN
LOGICAL = FALSEIF LOCK WAS OFF, SETLOCK, RETURN

L[ermoreperava

SUBROUTINE DEFINITIONS:

© CALL TSKSTART(7ASKARRA YV, NAME [LLIST]]
STARTUP TASK

CALL TSKWAIT(TASKARRAY)
WAIT FOR TASK

LOGICAL = TSKTEST(TASKARRAY)
LOGICAL = TRUE. IF TASK £EXISTS

CALL TSKYALUE(7ASKVALUE)
RETRIEVE TASKVALUE FOR THIS TASK

ivermorep&ra\/A(

SUBROUTINE DEFINITIONS:

CALL TASK_CLEANUP(TASKARRAY [LIST])

If root task
DELETE SHAREFD MEMORY

If non root task
COPY TASKARRA Y AND ARGUNMENTS BACK

RELEASE LIBRARY SHARED NEMORY USED BY TASK

Livermorepzm\{/—?}(

SUBROUTINE DEFINITIONS:

CALL SHAREDGLOBAL(7ASKARRAY)

USE SHARED ADDRESSES FROM TASKARRAY 70
AP THE SHARED METTORY.

ALSO AP A BLOCK OF DATA 70 BE USED BY THE
SUBROUTINE LIBRARY FOR INPLEMENTING
EVENTS, LOCKS, ARGUNENT PASSING.

(used by raoot task only)

CALL GET_TASK_INFO(7TASKARRAY [LIST]}

IAP LIBRARY SHARED MEIMORY

USE LIBRARY SHARED MEMORY TO PASS ADDRESSES

AND TASKARRAY (stored by tskstart subroutine)
USE SHARED ADORESSES FROM TASKARRAY TO

IMAP THE USER SHARED IMEMORY.

COPY TASKARRAY AND ARGUNMENTS

(used by non root task only)

Livermorep&ra\(@(

PROPOSED COSSHARE LIBRARY

DATA DEFINITIONS:

TASKARRAY: 1ST QUADWORD COUNT
2ND QUADWORD ENTRY #/ QUEUE NAME
3RD QUADWORD USER DEFINED YALUE

4TH QUADWORD BEG/END SHARED ADDR
NAME: TASK NAME (DESCRIPTOR)
LIST: ARGUMENT LIST (REFERENCE)

TASKYALUE: USER DEFINED, STORED AT
3RD QUADWORD OF TASKARRAY

LOCKDATA: LONGWORD REPRESENTING LOCK
EVENTDATA: LONGWORD REPRESENTING EVENT

ivermorep&ra\(é\x

CRAY / VM3 SUBROUTINES
*TASKING

® STARTUP TASK

® WAIT FOR TASK
® TEST IF TASK EXISTS

*BARRIER

® ASSIGN/RELEASE EYENT
® POST/CLEAR EVENT
® WAIT FOR EYENT

® TEST IF EVENT IS POSTED

*CRITICAL REGION

® ASSIGN/RELEASE LOCK
® TURN ON/OFF LOCK

® TEST IF LOCK IS ON

L [Eermoreper e

VMS
MULTITASKING GROUP OF JOBS

*ROOT TASK - PROGRAM
*ALL OTHER TASKS - PROGRAMS
% IBRARY OF SUBROUTINES

® MAP TASK SHARED DATA TO SHARED MEMORY
® PASS ARGUMENTS TO NON ROOT TASKS
® CLEANUP SHARED MEMORY BEFORE EXITING

*SET OF UTILITIES

® SET UP COMMAND FILES TO DEFINE TASK SHARED
MEMORY ENYIRONMENT

® SUBMIT JOBS TO A BATCH QUEUE

® CLEANUP AFTER ABNORMAL EXIT

[L e moreperavex

CRAY (COS)
MULT I TASK | NG
aN UNE PRP

[YRz

